finite sums. For example, for each (1,j) and (k,%)

P ((1,3), (ks2)) ~ I((4,3),(k,2)) + tA((1,5),(k,1L))

so that, consequently,

E(i’J)[Bt] ke

k % AC(1,3),(k,2)) .
k=0 L=0

(7)

To illustrate the meaning of (7), we 1list in Table 3 below the

specific form 1t takes for each of the four homogeneous pro-
cesses presented in Section 3.

" ,jg“@=ﬁnaavawﬁwﬁfﬁe*ﬁﬁfﬁﬁkﬂ*?T”@ﬁgi?ﬁﬁ%ﬂ?ﬁ%gﬁ?

% Table 3. APPROXIMATIONS TO E[Bt]
E Process Expression (7) for This Process
‘ (1.d)rg 7

1 E [8,] ~1 - jroppt

(i,3) ~

2 E [B,] ~ i - iidpkpt

3 E("j)[s 1~ - ijdgkot

4 38,1 ~ i - qyraagt

The approximations generated by (7) are computationally

useful in that no storage requirements and no long calculations
are involved.

The same need not be true, for example, of the
second order approximation
E(i’d)[B ] et ¢t Z k % A((1,3),(k,2))
" k=0 2=0
- 3B | 1o
: R RN
k=0
B

=0
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So long as the generator matrix A is available in closed form
(as it 1s in all the processes obtainable within the general
setting of Section 2) the storage requirements for A itself
are minimal. But A2 may not admit a simple closed form
expression and so may have to be stored in a computer in order
to make use of (8); the burden could be significant. In addi-
tion, substantial computation time is needed to calculate A2

if the number of weapon types is even moderately large. Finally,
other assumptions may negate the better degree of approximation
of (8) as opposed to (7). For purposes of comparison we give
in Table 4 the approximation to E(i’J)[Bt] obtained by applying
(8) to the first two homogeneous processes described in

Section 3.

Table 4. FURTHER APPROXIMATIONS TO E[Bt]

Process Expression (8) for This Process
1 s“'“[st] ~ 1 = jroPpt + irgPorobo ;—E
2 030181 ~ 1 - tidpkpt + 125agkgd ke E;
il Y

A heuristic justification of the first entry in Table U
is the following: the first order estimate

19 [B. ] ~ 1 - jropgt (9)

in fact overestimates Blue losses, since Red strength does not
remain at J throughout the time interval [0,t]. Using the
analogous estimate

z(i’”[nt] ~3 - irgogt ,
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one can take as a measure of Red strength the average

~ ir_ ppt
J = AI+(g-trgppt)] = g - B2 (10)

replacement of J by J in (9) yields the first expression in
Table 4. The expression for Process 2 is derived in an
analogous manner.

The point 1is that from a computational standpoint the first
order approximation (7) is always feasible and is directly avail-
able from the infinitesimal generator of the process. Higher
order approximations may or may not be computationally feasible;
if such approximations can be obtained in closed form (as in g
Table 4) their use is probably justified. Within theater-level
modeling contexts use of approximations of third degree or
higher is almost certainly as unnecessary as it 1s difficult.

Another still largely unexplored computational tool 1is the
embedded Markov chain associated with the attrition process
under study. Distributions, expectations and variances of ran-
dom variables defined in terms of the attrition process, but not //////
explicitly involving the continuous time parameter, can be cal-
culated using well-developed computational methods for Markov 7
chains. For example, suppose there is defined a fixed subs A
of the state space E which 1s a termination set in the sense
that the engagement terminates at the random time T at/ﬂﬁ?;h the
process ((Bt’Rt))t>0 first enters A. Then the distribution,
expectation, and variance of the terminal state (BT,RT) could be
obtained using Markov chain methods. The length T of the engage-
ment could not be so treated. For some examples of such analyses
the reader is referred to [10] and [11].
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Fire Allocation

As mentioned in Section 3, derivation of the fire alloca-
tion distributions ap»ag for weapons of class IS is a problem
of considerable practical interest; in the heterogeneous pro-
cesses discussed there we considered only the uniform fire
allocation

ag(1,y39) = y,/ E Vo -

This particular form of allocation is not always appropriate so
we shall briefly discuss some alternatives; these illustrate the
variety of effects that can be represented within the context of
our attrition process. For the rest of the discussion we con-
fine ourselves to a particular type i of Blue weapons.

_ 1. Restricted Uniform Allocation. Suppose there exists a
subset K1 of the index set {1,...,N} of Red weapon types such
that a Blue weapon of type 1 will never engage a Red weapon of
type J if J ¢ K15 such Red weapons may be interpreted as invul-
nerable to Blue weapons of type i. Otherwise, the fire alloca-

tion is uniform. Then we would have

Yl 1% if J € K
J REK, % i

0 otherwise .

aB(i.y;J) =

2. Priority Fire Allocation. Suppose that the N Red weapon
types are (unambiguously) ranked in some order (Jl(i),...JN(i)),
where (Jl(i),...,JN(i)) is simply a permutation of (1,...,N).
Further suppose that a Red weapon of type Jk(il;will never be
engaged if a Red weapon of type Jk_l(i) is present. This would
be represented by

aB(inY”k'(i)) ® 1y
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where

k* = min{k: yjk(i)#O}.

The type~1 weapons concentrate their fire upon the highest
priority opposition weapons currently surviving.

3. An Axiomatic Fire Allocation. We note here that all
allocations satisfying a simple set of axioms are of a particu-
lar form. The axioms are:

(1) ag(1,y3J) = 0 1f and only if y, = 0;

(11) For all target forces y and z and all j,

N
ag(1,y+z3J) = aB(i,y;J)[ ) Yy aB(i,y+z;2)]
=1 yg + zz

N
+ aB(i,z;J)[lzl ;;E%+;;-as(i,y+z;z)] .
We interpret these axioms in physical terms as follows. The
first states that a weapon type not present receives no fire
but that every weapon type present receives a positive fraction
of the fire. The second is best explained step by step. Con-
sider the effect of combining two target forces y and z into
the single force w = y + 2z, aB(i,y+z;2) is the proportion of
fire directed at the combined force w which 1s allocated to
type 2 weapons. If this fire 1s further allocated among the
type & weapons from 7he two component forces y and z in propor-
tion to the relative numbers of such weapons present, then

Yy

— a.(1,y+z;1)
VLT G Melieed

is the fraction of fire directed at the combined force that is
allocated to type L weapons originally part of the y-force.
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Thus
N y
2
o, = 2 —— a_(1i,y+z3%)
¥ o lgeq ¥y T8, TR

is the proportion of fire allocated to weapons of types originally
in the y-force and

N Zy
o = z e aB(i,y+z;2,)

Z =19 )
the fire allocated to weapons originally in the z-force. But the
fire represented by a_ should be allocated among weapon types
according to the distribution aB(i,y;-) and similarly for a, s
that one should have

aéi,y+z;-) = ayaB(i,y;o) + azaB(i,z;-).

If an assumption of this form did not hold, consistency problems
would arise, with fire allocation dependent on names given tar-
gets rather than only numbers of targets. (For example,
arbitrarily splitting a class of n indistinguishable weapons
into two subclasses of n, "Type A" and n - ny "Type B" weapons
would change the fire allocation.)

It has been shown by J. BLANKENSHIP [1] that the axioms
(1) and (i1) imply that
N
aB(isy;J) b beJ/lzl szz ’

where bJ = aB(i,(l,...,l);J). In this case, the fire allocation
for any target force is specified by that for any given base force,
and is linear in numbers of target weapons.
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Kill Distributions

Analysis of the sort used to define different forms of fire
allocation 1s also necessary to derive plausible specific forms
for the kill distributions for weapons of classes IM and PM,
especially the former. Unfortunately, little such analysis has
been carried out. In particular, some dependences allowed by
the notations can probably be neglected. For example, weapons
of class PM might be allowed to kill only weapons of the same
type as the weapon whose detection initiated the engagement.

If the binomial distributions of Homogenecu3s Process 4 were
felt to be applicable then we would have

y V-2
ug(1,d,¥52) = (3)(1-qg(1,3>>“qg(1,3> J

for z = (yl,...,yd_l,z,yj+l,...,yN) and: L = 0, iy, yJ. Further

work along these lines 1is clearly necessary in order to fully
exploit the capabilities of our model.

Further Phenomena

It is assumed throughout that all engagements occur instan-
taneously, with ensuing total loss of contact. A method for
relaxing this assumption, but retaining the Markov property of
the attrition process, is discussed in [8]. 1In [8] a discussion
is also given of possible inclusion of randomly arriving rein-
forcements. Neilther of these problems, however, is of the same
interest or importance as derivation of kill distributions for
multiple-kill weapons.

A final problem, which could turn out to be of considerable
significance, concerns dependences not allowed in the process of
Section 2. None of the parameters depends on the structure of
the force to which the weapon initiating an engagement belongs.

A plausible representation of such dependence would permit model-
ing of synergistic relations among weapons on the same side, a
phenomenon believed to be of considerable importance but so far
not well treated in attrition models.
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